OPPORTUNITIES AND CHALLENGES IN BIOGAS DEVELOPMENT IN INDONESIA

Paul Butarbutar
South Pole Carbon Asset Management Ltd
Overview

- Introduction South Pole Carbon
- Biogas potentials in Indonesia
- Existing regulation
- Key challenges and related opportunities
- Summary
- 2006: Incorporation in Zurich / Switzerland
- 2012: present on all continents
- 2011 and 2012: Best Project Developer**
- Swiss Social Entrepreneur of the Year 2011***
- 80 carbon professionals from 22 countries
- Projects in over twenty countries
- Specialized in high-quality “Gold Standard”

*Majority stake in Climate Friendly ** Environmental Finance’s Voluntary Carbon Market Survey 2011, and again 2012; *** Schwab Foundation/WEF
Largest premium projects portfolio

- 200 contracted projects in over 20 countries
- Total volume: 60 million tCO$_2$e until 2012
- 50% market share of Gold Standard projects
- Projects in advanced development: 30 million tCO$_2$e until 2012

...from a broad project pipeline

...and from the most important project types

- Renewable Energy (Biomass, Hydro, Wind, Geothermal)
- Waste Treatment (liquid and solid)
- Energy Efficiency
- Reduction of Waste Gas (Oil, Gas and Chemical Industries)
- Forestry
- Programmatic Approach (PoAs)
Carbon projects & sustainable development

- Generation of co-benefits for the local communities
 - qualify projects for the Gold Standard whose credits fetch a premium in the carbon markets.

- First ever Gold Standard carbon credits
 - Biomass Malavalli / India

- Leadership Position on Gold Standard Registry
 - 45 projects listed.

- Positive social impact on hundreds of mostly rural communities
 - improving the lives of many thousands of people
• Carbon Credits: From extensive pipeline of projects to help clients reduce their carbon emissions and meet sustainability targets.

• Emission Reduction Projects: Development and management of projects in collaboration with technology providers and project developers.

• Climate Friendly Solutions: Concrete solutions to help enhance the sustainability profile of organizations such as Insetting (i.e. development of own projects) and GoldPower (i.e. a worldwide renewable energy label).

• New Carbon Markets: expertise and advisory services using its knowledge of EU-ETS, CDM and voluntary carbon markets.
Overview

Introduction South Pole Carbon

Biogas potentials in Indonesia

Existing regulation

Key challenges and related opportunities

Summary
Oil palm plantation in Indonesia

Area untuk perkebunan kelapa sawit di Indonesia, 2009

Sumber: Euromonitor; Data Konsultan; AISI; Tim Analisis
Biogas potentials utilizing POME
Palm oil mills in Indonesia

<table>
<thead>
<tr>
<th>No.</th>
<th>Propinsi</th>
<th>Jumlah Pabrik Pengolahan Kelapa Sawit (unit)</th>
<th>Kapasitas Produksi (ton TBS/jam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NAD</td>
<td>25</td>
<td>980</td>
</tr>
<tr>
<td>2.</td>
<td>Sumatera Utara</td>
<td>92</td>
<td>3.815</td>
</tr>
<tr>
<td>3.</td>
<td>Sumatera Barat</td>
<td>26</td>
<td>1.645</td>
</tr>
<tr>
<td>4.</td>
<td>Riau</td>
<td>140</td>
<td>6.660</td>
</tr>
<tr>
<td>5.</td>
<td>Kepulauan Riau</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>Jambi</td>
<td>42</td>
<td>2.245</td>
</tr>
<tr>
<td>7.</td>
<td>Sumatera Selatan</td>
<td>58</td>
<td>3.555</td>
</tr>
<tr>
<td>8.</td>
<td>Bangka Belitung</td>
<td>16</td>
<td>1.235</td>
</tr>
<tr>
<td>9.</td>
<td>Bengkulu</td>
<td>19</td>
<td>990</td>
</tr>
<tr>
<td>10.</td>
<td>Lampung</td>
<td>10</td>
<td>375</td>
</tr>
<tr>
<td>11.</td>
<td>Jawa Barat</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>12.</td>
<td>Banten</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>13.</td>
<td>Kalimantan Barat</td>
<td>65</td>
<td>5.475</td>
</tr>
<tr>
<td>14.</td>
<td>Kalimantan Tengah</td>
<td>43</td>
<td>3.100</td>
</tr>
<tr>
<td>15.</td>
<td>Kalimantan Selatan</td>
<td>15</td>
<td>770</td>
</tr>
<tr>
<td>16.</td>
<td>Kalimantan Timur</td>
<td>29</td>
<td>1.545</td>
</tr>
<tr>
<td>17.</td>
<td>Sulawesi Tengah</td>
<td>7</td>
<td>590</td>
</tr>
<tr>
<td>18.</td>
<td>Sulawesi Selatan</td>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td>19.</td>
<td>Sulawesi Barat</td>
<td>6</td>
<td>260</td>
</tr>
<tr>
<td>20.</td>
<td>Sulawesi Tenggara</td>
<td>3</td>
<td>260</td>
</tr>
<tr>
<td>21.</td>
<td>Papua</td>
<td>3</td>
<td>140</td>
</tr>
<tr>
<td>22.</td>
<td>Papua Barat</td>
<td>4</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>608</td>
<td>34,280</td>
</tr>
</tbody>
</table>

Sumatra:
- Mills: 429
- Capacity t/h: 21,540
Energy potentials of POME

<table>
<thead>
<tr>
<th>POM capacity (tones FFB/hour)</th>
<th>60</th>
<th>45</th>
<th>30</th>
<th>21540</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation (hours/day)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Operation (days/year)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>POME/FFB</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
<td>65%</td>
</tr>
<tr>
<td>Methane conversion (Nm3/kg COD)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>COD removal efficiency (%)</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Methane content in biogas (%)</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>Methane thermal energy (MJ/Nm3)</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Volume POME per day (m³)</td>
<td>780</td>
<td>585</td>
<td>390</td>
<td>280020</td>
</tr>
</tbody>
</table>

COD (mg/l)	50000	50000	50000	50000
COD Load (kg COD/day)	39000	29250	19500	14001000
Gas engine efficiency (%)	38%	38%	38%	38%
Methane potentials (m³)	10530	7897.5	5265	3780270
Electricity potentials (MW)	1.57	1.18	0.79	565

COD (mg/l)	75000	75000	75000	75000
COD Load (kg COD/day)	58500	43875	29250	21001500
Methane potentials (m³)	15795	11846.25	7897.5	5670405
Electricity potentials (MW)	2.36	1.77	1.18	848

Potentially reduce GHG emission of about 10.8 mio tones of CO2/year from POME component and about 4.2 mio tones of Cos/year from electricity component
Overview

Introduction South Pole Carbon

Biogas potentials in Indonesia

Existing regulation

Key challenges and related opportunities

Summary
The Main Target:

- Energy Elasticity less than 1 at 2025
- Optimizing Primary Energy Sources

Energy Mix (2025)

- Coal 33%
- Gas 30%
- Oil 20%
- NRE, 17%
- Biofuel 5%
- Geothermal 5%
- Biomass, Nuclear, Hydro Power, Solar, Wind Power 5%
- Liquefaction Coal 2%
• Agriculture Minister Regulation No. 19/Permentan/OT.140/3/2011
 – Oil palm plantation/palm oil mill have to be ISPO certified latest 31 December 2014
 – Conditions of ISPO-certified plantation: 3.6. GHG emission mitigation, includes:
 • Technical Guidelines/SOP for GHG mitigation available;
 • GHG emission inventory conducted;
 • Records on the process of land-use trajectory available;
 • Records on GHG emission reduction activity available;

• POME utilization to generate biogas could be part GHG emission mitigation
MEMR Regulation No. 4/2012 on FIT

<table>
<thead>
<tr>
<th>No.</th>
<th>Energy</th>
<th>Installed Capacity</th>
<th>Tariff</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Biomassa</td>
<td>Up to 10 MW</td>
<td>Rp. 975,- / kWh X F</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Biogas</td>
<td>Up to 10 MW</td>
<td>Rp. 975,- / kWh X F</td>
<td>Non MSW</td>
</tr>
<tr>
<td>3.</td>
<td>Municipality Solid Waste</td>
<td>Up to 10 MW</td>
<td>Rp. 1050,- / kWh</td>
<td>Zero waste *)</td>
</tr>
<tr>
<td>4.</td>
<td>Municipality Solid Waste</td>
<td>Up to MW</td>
<td>Rp. 850,- / kWh</td>
<td>Landfill *)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Biomassa</td>
<td>s.d 10 MW</td>
<td>Rp. 1.325,- / kWh X F</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Biogas</td>
<td>s.d 10 MW</td>
<td>Rp. 1.325,- / kWh X F</td>
<td>Non sampah kota</td>
</tr>
<tr>
<td>3</td>
<td>Municipality Solid Waste</td>
<td>s.d 10 MW</td>
<td>Rp. 1.398,- / kWh</td>
<td>Zero waste *)</td>
</tr>
<tr>
<td>4</td>
<td>Municipality Solid Waste</td>
<td>s.d 10 MW</td>
<td>Rp. 1.198,- / kWh</td>
<td>Landfill *)</td>
</tr>
</tbody>
</table>

- F factor is based on the project location:
 - Jawa, Bali, Sumatera : F = 1
 - Kalimantan, Sulawesi, NTB dan NTT : F = 1,2
 - Maluku dan Papua : F = 1,3

*Notes: *) in accordance with the Law No. 18/2008 on waste management
Overview

- Introduction South Pole Carbon
- Biogas potentials in Indonesia
- Existing regulation
- Key challenges and related opportunities
- Summary
Challenges

• Most of palm oil mills are located in the remote area, so that it would be too costly to build transmission line to the nearest grid

• Palm oil mills are energy self-sufficient; only if you want to build other facility (e.g. KCP) then you might build biogas plant to provide additional electricity

• Performance of biogas projects in Indonesia are not so encouraging to invest in (based on benchmark study conducted in collaboration with GIZ)
Biogas CDM projects in Indonesia

- **2008:** 1
- **2009:** 1
- **2007:** 1
- **2006:** 2
- **2010:** 3
- **2011:** 5
- **2012:** 24

Year Distribution:
- 2008: 1
- 2009: 1
- 2007: 1
- 2006: 2
- 2010: 3
- 2011: 5
- 2012: 24

Feedstock Distribution:
- POME: 58%
- Starch: 32%
- Animal Manure: 4%
- Ethanol: 2%
- Others: 4%

Status Distribution:
- Under construction: 30%
- Started operation: 44%
- Not known: 26%
- No CER issuance: 76%
- CER issuance: 24%
Performance of CDM biogas projects

• Out of 10 issued biogas project, in term of CER issuance:
 – 3 project performed its CERs expected values in PDD
 – 2 projects performed between 75% - 100% of PDD values
 – 3 projects performed more than 50% - 75% of PDD values
 – 2 projects performed less than 50% of PDD values
Opportunities

• ISPO and FIT provide sufficient potentials for development of biogas projects

• Some investors are ready to invest money and bring technology

• Carbon market still a potential to get additional revenue
 – South Pole has registered POA on biogas to electricity in Indonesia
 – This POA can be expanded to Malaysia and other region (South Pole has already expanded 2 POAs to Malaysia: Co-composting and Renewable Energy
POA in nutshell

Activities coordinated voluntarily by private sector or government:

- Coordination and implementation of policy/standard or certain objectives that wants to be achieved;
- Activities aimed at GHG emission reduction or increase carbon sequestration by forest;
- Activities, which is additional and would not happen without PoA;
- Registering CDM project activities (CPAs) without limitation.
Remark:
1. White: responsibility of project owner and partner
2. Green: responsibility of DNA
3. Blue: responsibility of coordinating entity
4. Pink: responsibility of DOE
5. Yellow: responsibility of EB
Summary

• Treatment of waste in to biogas can present a good business opportunity that not only generate financial profit, but also bring environmental benefit

• FIT is already established in Indonesia, which guarantee sufficient tariff for connection with the electricity grid

• Need to use technology that can improve the efficiency of waste treatment
Terima kasih atas perhatian anda!

Look forward to helping your company materialize its carbon assets

www.southpolecarbon.com

Graha Iskandarsyah Lt. 2
Jl. Iskandarsyah 66C
Jakarta 12160
Phone +62 21 7207 567
Fax +62 21 7206 039
Mobile +62 811 99 303 99
p.butarbutar@southpolecarbon.com